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Abstract--It is known that heat transfer between two liquid-reservoirs maintained at different temperatures 
and connected to each other by a capillary bundle is markedly enhanced by oscillatory flow in the bundle. 
In this paper, first, the effects of physical properties of the working liquid on the enhanced heat flow rate 
are investigated. Second, the optimum operating condition maximizing the ratio of the enhanced heat flow 
rate to power input is examined. Finally, to increase further the ratio, a novel type with a phase shift 

between oscillatory flows in adjacent tubes is proposed. 

1. INTRODUCTION 

I. 1. Oscillation-induced heat transport 
In this paper, heat transport phenomena caused by 

a substance oscillating or reciprocating inside a tube 
or a cylinder are referred to generically as "oscillation- 
induced heat transport phenomena". The substance 
may be in solid phase, liquid phase or gas phase. 

The oscillation-induced heat transport by reci- 
procating motion of a solid substance is observed in 
cryogenic refrigerators for example. Zimmerman and 
Longsworth [1] reported an analysis on the so-called 
"shuttle heat transfer" in the expander-type refriger- 
ators which open,ate on the Stirling cycle, Gifford- 
McMahon cycle, Solvay cycle, Vuilleumier cycle, or 
some modification of  one of these. In these refriger- 
ators, a piston with an axial temperature gradient 
reciprocates inside a cylinder with a similar tem- 
perature gradient, and the reciprocating motion of the 
piston brings about a remarkable increase in heat flow 
down the temperature gradient. For  example, in the 
expander of  Gifford-McMahon refrigerators, this 
temperature gra6ient is established because one end 
of the displacer ~.nd cylinder is at room temperature 
while the other end is at a low temperature, and the 
enhanced heat flow from the hot to cold end due to 
the reciprocating motion of the displacer increases 
heat loss for the refrigerator. This enhanced heat 
transport is referred to as shuttle heat transfer. 
Recently, for shuttle heat transfer, Nishio and Inada 
[2] presented a more precise heat conduction analysis. 

In the case that the oscillating substance is a liquid, 
the phenomena relate to the so-called "dream pipe" 
proposed by Kurzweg and Zhao [3]. In the dream 
pipe developed by them, hot and cold liquid-reservoirs 
are connected to ,~ach other by a capillary bundle, as 
shown in Fig. 1. If the liquid columns in the bundle 
reciprocate with an amplitude of  tidal displacement 

smaller than the bundle length, the heat flow rate 
from the hot to cold reservoir is remarkably increased 
depending on the amplitude and frequency of the 
oscillatory liquid flow. Such phenomena are similar 
to the extraordinary mass diffusion in both steady and 
oscillatory viscous laminar flows within tubes which 
was first investigated by Taylor [4]. Since these tubes 
can act as heat transport tubes similar to heat pipes, 
the fundamental heat-transport analyses and its appli- 
cation have been reported recently [5-10]. 

In the above two cases, enhanced heat transport 
induced by oscillating motion of a substance inside a 
tube is considered to relate to temperature oscillation 
due to the displacement along the temperature gradi- 
ent. However, if the substance is a gas, the phenomena 
change dramatically because temperature oscillation 
caused by pressure oscillation is superimposed on that 
due to the displacement [11]. Gifford and Longsworth 
[12] developed a low-temperature refrigerator without 
the use of low-temperature moving parts or the Joule- 
Thomson effect. The refrigerator consists of  a cylin- 
der, a regenerator and a mechanism causing pressure 
oscillation in gas inside the cylinder. Stack-type heat 
exchangers are located at both ends of the cylinder. 
In this simple refrigerator, the acoustic standing wave 
creates a temperature gradient along the cylinder and 
then an amount of heat is pumped up from the cold- 
end to hot-end heat exchanger. This type of refriger- 
ator is called as the "basic pulse-tube refrigerator 
(PTR)", and Gifford and Longsworth [13] reported 
the so-called "surface pumping effect" as the funda- 
mental mechanism of this refrigerator. Recently, 
modified PTRs have been developed by changing the 
standing wave to the traveling wave with phase 
shifters [14, 15]. 

The three examples mentioned above are gen- 
etically based on heat transport induced by oscillatory 
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NOMENCLATURE 

A area [m 2] X 
Ac cross-section of liquid column [m 2] x 
Cp specific heat of liquid [J kg- lK -t] y 
Cw specific heat of tube wall material 

[J kg- tK -1] Z 
f frequency [s -1] 
Go~,+ net heat flow from hotter, stagnant 

boundary layer to colder core-liquid- 
column during half period for X > 0 
[J] 

Go~,- net heat flow from hotter core-liquid- ~tw 
column to colder, stagnant boundary y 
layer during half period for X < 0 [J] 6 

H half gap of two-dimensional tube [m] 6u 
j volumetric heat generation rate 

[W m -3] ~t 
J0 see equation (11) 
k thermal conductivity of liquid ~/~ 

[W m - l K  -I ] 0 
kef effective thermal conductivity 0w 

[W m - l K  -I] 
kef, t total, effective thermal x 

conductivity = k + kef [W m-  I K -  1] /~ef 
kw thermal conductivity of tube wall l~ef,p 

material [W m-  1K- 1] /~ef, p 0 
Mu see equation (36) 
M~,op see equation (32) x~f,~ 
Mx,op see equation (31) xef,~o 
P amplitude of pressure gradient 

[N m -3] Kef, t 
Pr Prandtl number 
Q~ time-averaged, additional heat-flow- Xw 

rate down unit temperature gradient 
If~l = 1 K m -l  along tube axis [W] 2 

Qo~ instantaneous heat-flow-rate through p 
slip interface [W] Pw 

Q .... time-averaged heat-flow-rate through a 
slip interface [W] T 

q lateral heat flux at slip interface Z 
[W m -z] q~ 

qa~ time-averaged, axial heat flux down 
temperature gradient [W m -2] t~ 

R tube radius [m] ~o 
S amplitude of tidal displacement of 

oscillatory flow [m] 
t time [s] 
u velocity to x direction 
u~ see equation (35) 
Wo Womersley number = 

Wo = R~/(~o/v) or/4,/(<o/~) 
W~ power input to drive oscillatory flow 

in tube of unit length [W] 

displacement of core interface [m] 
axis along tube length [m] 
axis along gap in two-dimensional tube 
[m] 
characteristic length of cross-section 
(R or H) [m]. 

Greek symbols 
Wox/ Pr = R~/ (~ol~c) or H~/ (~olx) 
R~/(o~/~w) or HJ(o/~.) 
thermal diffusivity ratio = x/xw 
half thickness of tube wall [m] 
thickness of velocity boundary 
layer = ~/(2v/~o) [m] 
thermal penetration depth = ~/(2x/co) 
[m] 
thermal coefficient (see equation (26)) 
temperature fluctuation in liquid [K] 
temperature fluctuation in tube wall 
[K] 
thermal diffusivity of liquid [m 2 s-1] 
effective thermal diffusivity [m 2 s-J] 
xof of phase shifted OCHTs [m z s- l] 
asymptotic value of xef, p for a ~ 0 
[m 2 s- ' ]  
xef of synchronized OCHTs [m 2 s- 1] 
asymptotic value of xer, s for a ~ 0 
[m 2 S -1 ] 

total, effective thermal 
diffusivity = x + r,f [m z s- 1] 
thermal diffusivity of tube wall 
material [m / s -1] 
pressure gradient [Pa m-l]  
density of liquid [kg m-  3] 
density of tube wall material [kg m -3] 
ratio of wall thickness to gap = 3/H 
time delay = (n/2 - tp)/og, see Fig. 3 [s] 
~/ (kwpwCw) / ,/  (kpcp) 
phase shift between lateral heat flux 
and oscillatory flow, see Fig. 3 
axial temperature gradient [K m-1] 
angular frequency = 2nf  [s- 1]. 

Subscripts 
op optimum operating condition. 

Superscripts 
* non-dimensional value 
# asymptotic value for a --+ oo. 

motion of a substance inside a tube. As for the latter 
two cases, Swift published an excellent lecture note 
entitled "Thermoacoustic Engines" [11]. In the pre- 

sent paper, however, the term "oscillation-induced 
heat transport" will be used to include shuttle heat 
transfer. 
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Fig. 1. Schematic diagram of dream pipe developed by Kur- 
zweg and Zhao. 

1.2. Oscillation-controlled heat transport tube 
As stated already, the dream pipe developed by 

Kurzweg and Zhao [3] can act as a heat transport 
device similar to heat pipes. In the present paper, the 
heat transport devices using oscillatory liquid flows 
are referred to generically as "oscillation-controlled 
heat transport tubes (OCHTs)" to include types other 
than the dream pipe shown in Fig. 1. As for the OCHT 
shown in Fig. 1, the total, effective thermal con- 
ductivity or diffu,'~ivity in the liquid column portion is 
a key value to determine the thermal characteristics. 
Here, the total, effective thermal conductivity k~f,t is 
defined as 

kef.t---Iqax/f~l (1) 

where qax is the axial, time-averaged heat flux based 
on the cross-section of  the liquid column and f~ is the 
temperature gradient along the liquid column. Using 
this definition of koe.t, the effective thermal con- 
ductivity kef is defined as 

k,f = ka, t - k (2) 

where k is thermal conductivity of the liquid. In the 
same way, the effective thermal diffusivity can be 
defined as 

x~f = ker/pcp (3) 

where p and Cp are density and specific heat of  the 
liquid, respectively. In this paper, the quantities such 
as ka and x~f will be called as "apparent properties". 
As known from equations (2) and (3), the effective 
thermal conductivity is proportional to the effective 
thermal diffusivity. In the present paper, thus, thermal 
characteristics of  OCHTs will be discussed by using 
kof or xa, as the case may be. 

It should be noted here that the OCHTs are based 
on enhanced heat transport similar to the extra- 
ordinary mass di~asion in both steady and oscillatory 

viscous laminar flows in which, as analyzed by Chat- 
win [16] and Watson [17], contaminants or gas con- 
stituents will diffuse at rates much higher than pure 
molecular diffusion. Thus, in the case that the effect 
of heat capacity of tube walls on the enhanced heat 
flow can be neglected, the apparent properties of 
OCHTs can be predicted simply by replacing mass 
diffusivity by thermal diffusivity in these analyses on 
the extraordinary mass diffusion. In the present paper, 
the equations obtained by such replacement in the 
equations derived by Watson [17] are called as the 
"modified Watson's equations". For such OCHTs, 
following Kurzweg and Zhao [3], Kurzweg [5] 
reported an analysis under the condition of  
R2(co/x) < n where R is radius of  the tube and a~ is 
angular frequency of the oscillatory flow, and Ozawa 
and Kawamoto [6] developed a simplified numerical 
model to estimate the effective thermal diffusivity. 
Further, Katsuta et al. [7] reported experimental 
results and correlations on heat transfer between 
reservoirs. 

On the other hand, if the effect of heat capacity of 
tube walls on the enhanced heat flow is not negligibly 
small, the apparent properties can not be predicted 
by the modified Watson's equations. For such cases, 
Tominaga [8] presented a simple formula of  qax based 
on the thermoacoustic analysis of nonviscous fluids, 
and Kaviany [9] presented analyses focusing on both 
liquid columns and reservoirs of  a bundle-type OCHT 
of circular tubes. 

Comparing with heat pipes, OCHTs have the fol- 
lowing features. 

(1) While in heat pipes the operating temperature 
range is limited by the saturation temperature of  the 
working liquid, OCHTs can enlarge the operating 
temperature range because they do not use phase 
change phenomena. 

(2) While the tube material of  heat pipes is limited 
due to material incompatibility, OCHTs are free of 
such limitation. 

(3) While heat pipes need a special structure to 
produce the capillary pumping head returning the 
working liquid from the cold to hot end, OCHTs do 
not necessitate such a structure and then they are very 
simple. 

(4) While in heat pipes a special device is needed to 
control the heat transport characteristics, the effective 
thermal conductivity or diffusivity in OCHTs can be 
easily controlled by changing the frequency or ampli- 
tude of  the oscillatory flow. 

(5) While heat pipes operate without external 
power supply, OCHTs need it to drive and keep the 
oscillatory flow. 

(6) To develop compact heat transport devices, it 
is necessary to remove or reduce a volume to absorb 
the tidal displacement in OCHTs. 

(7) While in heat pipes heat transfer coefficients at 
the hot and cold ends are very high, they should be 
enhanced in OCHTs. 



2460 S. NISHIO et al. 

The features (1-4) are merits of OCHTs, but (5-7) 
are demerits. To develop useful OCHTs, thus, such 
demerits should be reduced and the optimum operat- 
ing condition achieving the highest performance of 
OCHTs should be investigated. 

In the present paper, as the first paper of our study 
on the OCHTs, we will focus on thermal charac- 
teristics in the liquid column portion of OCHTs. First, 
neglecting heat capacity of tube walls, the effects of 
physical properties of the working liquid on the effec- 
tive thermal conductivity or diffusivity along the 
liquid column of OCHTs will be discussed to develop 
the selection criteria of the working liquid. Second, 
introducing a concept of the thermal coefficient which 
is the ratio of additional heat-flow-rate to power input 
and also neglecting heat capacity of tube walls, the 
effects of geometrical and flow conditions on the ther- 
mal coefficient will be discussed to look for the opti- 
mum operating condition maximizing the coefficient. 
Finally, a novel phase shifted OCHT using also heat 
transfer through the tube walls between adjacent 
liquid columns will be proposed to increase further 
the thermal coefficient of OCHTs. 

On the other hand, if the temperature gradient 
along the tube axis is kept constant, the time-averaged 
amount of enhanced heat flow down the axial tem- 
perature gradient due to the oscillatory flow depends 
on cross-sectional temperature distribution caused by 
the oscillatory flow [11]. In the case that heat capacity 
of the tube walls is negligibly small, this cross-sectional 
temperature distribution is generated only by the vel- 
ocity profile. Here, define the non-dimensional num- 
ber ~ for circular tubes as 

and for two-dimensional tubes as 

where 6 t is the thermal penetration depth defined as 

fit = ~ -  . (9) 

2. EFFECTS OF PHYSICAL PROPERTIES OF 
WORKING LIQUID 

In this section, phenomenalistic key quantities con- 
trolling thermal characteristics of OCHTs will be dis- 
cussed by a slip flow model to investigate the effects 
of  physical properties of  the working liquid on the 
effective thermal conductivity or diffusivity. In the 
model, to simplify the discussion, heat capacity of 
tube walls in OCHTs will be neglected. 

Equations (7) and (8) indicate that, for Wo >> 1 and 
>> 1, a 'thermal-core region' with uniform tem- 

perature exists in a central area within the core region. 
The oscillatory flow condition corresponding to this 
situation is named as the 'undeveloped flow condition' 
in the present paper. Both the core and thermal-core 
regions disappear under the conditions of Wo << 1 
and ~ << 1, and then the oscillatory flow condition 
corresponding to this situation is named as the 
'developed flow condition'. 

2.1. Velocity and temperature distributions in oscil- 

latory flow 
Known as the Stokes second problem, in both 

steady and oscillatory viscous laminar flow in a tube 
of large diameter, a velocity boundary layer with a 
thickness roughly estimated by the following equation 
is formed near the tube wall [17] : 

&~ = ~ -  . (4) 

Here, defining the Womersley number for circular 
tubes as 

and for two-dimensional tubes as 

Wo = - 6u (6) 

it is known that, for Wo >> 1, a 'core region' with 
uniform velocity appears in a central area within the 
cross-section of the oscillatory flow. 

2.2. Slip-flow model 
Focusing on the undeveloped flow condition, we 

will discuss phenomenalistic key quantities governing 
the effective thermal conductivity or diffusivity by 
using a slip flow model shown in Fig. 2. In the slip flow 
model, for simplicity, we consider a two-dimensional 
tube with 2H gap and unit width, and we neglect 
heat capacity of the tube walls. The axial temperature 
gradient along the x axis is kept at a constant value 

= a T/~x > O. 

First, as shown in Fig. 2(a), considering a stagnant 
situation of the liquid column, it is divided into upper 
and lower liquid columns by the cross-section at 
x = xo. Following the above definition of the axial 
temperature gradient, the upper liquid column is the 
hotter one and the lower liquid column is the colder 
one. For  oscillatory flow situation, as shown in Fig. 
2(b), it is assumed that each liquid column consists of 
the "stagnant boundary layer" with thickness 6u and 
the "core liquid column" with uniform velocity. 
Therefore in the model, the hotter liquid column is 
subdivided into the hotter, stagnant boundary layer 
and the hotter core-liquid-column. In the same way, 
the colder liquid column is subdivided into the colder, 
stagnant boundary layer and the colder core-liquid- 
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Fig. 2. Schematic diagram of slip flow model simulating 

thermal characteristics of OCHTs. 
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column. The interface between the hotter and colder 
stagnant boundary layers is named as the 'stagnant 
interface', the interface between the hotter and colder 
core-liquid-columns as the 'core interface', and the 
interface between the hotter, stagnant boundary layer 
and the colder core-liquid-column (or that between 
the colder, stagnant boundary layer and the hotter 
core-liquid-column) as the 'slip interface'. The 
location of the core interface is given by x = X +  x0. 

The time-averaged value of total heat-flow-rate 
down the axial temperature gradient f] is that from 
the upper to lower liquid column, and it is the sum of 
time-averaged heat-flow-rates through the three inter- 
faces defined above. Since the heat flows through the 
stagnant and core interfaces are the axial, pure molec- 
ular-conduction heat flows down the axial tem- 
perature gradient f~, the additional heat flow caused 
by the reciprocating motion of the core liquid column 
is only the heat flow through the slip interface normal 
to the reciprocating motion. The time-averaged rate 
of this additional, lateral heat flow, Q ..... relates to 
Go~.+ and Go~._, where Go~,+ denotes the net heat flow 
from the hotter, stagnant boundary layer to the colder 
core-liquid-column in the half period corresponding 
to X > 0 and Go~,- that from the hotter core-liquid- 

column to the colder, stagnant boundary layer in the 
successive half period corresponding to X < 0. Thus, 

a .... = f(Go~,+ + Gos._) (10) 

where f is frequency of the reciprocating motion of 
the core liquid column. 

As stated above, the values of Gos,+ and Gos,- 
depend on temperature distribution in the cross-sec- 
tion of the liquid column. Giving the reciprocating 
motion as X =  S.sin[~ot], the temperature dis- 
tribution in the cross-section at x = x0 can be cal- 
culated by solving one-dimensional unsteady heat 
conduction along the y axis accompanied by the fol- 
lowing volumetric heat-generation-rate in the core 
liquid column. 

J0 = - (pCp)(SfRo) cos [cot]. (11) 

It should be noticed here that there is a phase shift 
between the reciprocating motion and the heat gen- 
eration rate. Denoting the temperature oscillation at 
x = x0 by 0, the heat conduction equation in the sys- 
tem is given as 

00 020 j 
- x__2 + - - .  (12) 

0t Cy pep 

The value o f j  and the boundary conditions are 

O<~y<~6u j = 0  (13) 

fiu~<y~<H j = j 0  (14) 

00 
y = 0  and y = H  ~yy=0. (15) 

The time-averaged, additional heat-flow-rate from the 
upper to lower liquid column caused by the reci- 
procating motion of the core liquid column is given 
by 

Q .... = ~njjo ao, dt 

= ~ ] J o  2qXdt 

(co'~ f2,~/~ _2kfO0" ~ (Ssin [cot])dt (16) 

where q and Qo~ denote the lateral heat flux and instan- 
taneous heat-flow-rate through the slip interfaces, 
respectively. 

One of the results for instantaneous values of X, q 
and Qo~ obtained from the slip flow model is shown in 
Fig. 3. In Fig. 3, the working liquid is water and the 
oscillatory flow conditions are S = 5 mm and f = 1 
Hz. The following results can be obtained from Fig. 
3. First, the lateral heat flux at the slip interface, q, 
oscillates with the same period as the reciprocating 
motion, X. Second, equation (10) indicates that 
Q .... = 0 if the phase shift between the heat flux and 
the reciprocating motion is q~ = n/2, but in the case of 
Fig. 3 this phase shift is about q~ = n/4. In other wards, 



2462 S. NISHIO et al. 

1500 

~ 1000 

500 

-500 

-1000 

-1500 

Water(S =0.05m,f=l/-Iz, t2=100K/m) 
""t '" '~ I-Ieat flow rate(Q..) 

. ' 
,oO*'[ ' "['%~m/°o o e e# reeee ." 

i l j l  m 

0 250 500 750 1000 
Time, rnsec 

Fig. 3. Instantaneous values obtained from slip flow model. 
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Fig. 4. Dependency of time delay and time-averaged, 
additional heat-flow-rate on thermal conductivity predicted 

from slip flow model. 

focusing on the half period 0 ~< t ~< 500 ms, the direc- 
tion of the reciprocating motion changes at t = 250 
ms, but the direction of lateral heat flow at the slip 
interface changes at t = 250 ms+z .  Here, 

= ( n / 2 -  ~)/to. This result indicates that, for the half 
period, the duration in which heat flows from the 
hotter, stagnant boundary layer to the colder core- 
liquid-column through the slip interface is longer by 
2z than the duration in which heat flows back from 
the colder core-liquid-column to the hotter, stagnant 
boundary layer. This phase shift ¢p or time delay z 
results in a positive value of Go~+. Third, the instan- 
taneous heat-flow-rate at the slip interface, Qo~, oscil- 
lates with half of the reciprocating motion period and 
thus Gos.+ = Go~_. As a result, in addition to axial, 
pure molecular-conduction down the temperature 
gradient f~, the amount of heat 2Go~,+ is transported 
from the upper to lower liquid column during one 
cycle of the reciprocating motion. 

The above results indicate that the phenomenalistic 
key quantities controlling the time-averaged, 
additional heat-flow-rate in both steady and oscil- 
latory liquid flow are the phase shift between the lat- 
eral heat flux and the oscillatory flow q~ and the mag- 
nitude of the lateral heat flux normal to the tube axis 
q. It is clear that decrease in q~ and increase in q make 
the axial, time-averaged heat-flow-rate larger. 

2.3. Estimation o f  optimum working liquid 
To examine the effects of physical properties of the 

working liquid on the time-averaged, additional heat- 
flow-rate, the values of z (=  ( n / 2 -  ~p)/co), q and Q .. . .  
were calculated by changing artificially the value of 
thermal conductivity of the working liquid in the slip 
flow model. The results for ~ and Q .. . .  are shown in 
Fig. 4. In the figure, physical properties other than 
thermal conductivity were taken as the respective 
actual values of water. As shown in the figure, the 
time delay z is kept constant for smaller values of the 
thermal conductivity, but it starts to decrease if the 
thermal conductivity is increased beyond about 1 W 
m-]  K -t .  On the other hand, the increase in thermal 
conductivity makes the magnitude of  the lateral heat 

flux at the slip interface larger (not shown in the 
figure). Such conflicting effects of the increase in ther- 
mal conductivity on the key quantities bring about a 
maximum in Q .. . .  at a value of thermal conductivity 
as shown in Fig. 4. Noticing that the effective thermal 
conductivity is given by 

a o s + m  
k+, = 2--ff~ (17) 

the results shown in Fig. 4 indicate that there exists 
the optimum physical property of  the working liquid 
maximizing the effective thermal conductivity or 
diffusivity. 

Now, we will investigate quantitatively the effects 
of  physical properties of  the working liquid on the 
apparent quantities. Nishio et aL [18] reported exper- 
imental results of the effective thermal diffusivity for 
water in a circular tube of acryl, and they concluded 
that the experimental data were in good agreement 
with the predictions from the modified Watson's equa- 
tions. For example, the modified Watson's equations 
for circular tubes are given as 

N 1 [ Wo] 
1 

xef = 2(1-Pr-2)N~[Wo]  ~c (18) 

N[¢] = ber 2 [¢] + bei 2 [~] (19) 

~N"[¢] + N'[~] 
N, [~] - (20) 

N'[~] 

3 N[~] + N '  [~] - ¢N"[¢] - ~ 2 N"[~] 
N2[~] = (21) 

~4N'[~] 

and for the undeveloped flow condition 

xof = 0.707 S 2 

and for the developed flow condition 

where 
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x c r = ~  1 2880 ~ - - .  (23) 

Using these equations, the dependency of Xef on k (or 
viscosity) can be discussed by changing artificially the 
value of k (or viscosity) and holding other physical 
properties as the respective actual values of  water. The 
results for the undeveloped flow condition are shown 
in Fig. 5. The vertical line is the actual value of  thermal 
conductivity (or viscosity) of  water. As well as Fig. 4, 
it is found that the effective thermal diffusivity reaches 
a maximum at a value o fk  (or viscosity). In addition, 
it is also found that the actual properties of  water are 
near the respective optimum values. 

These results can be confirmed more directly by 
plotting frequency characteristics of the apparent 
properties for a given set of S and R. In Fig. 6, the 
frequency characteristics predicted from equation (18) 
are plotted for three typical liquids. It can be found 
that the thermal conductivity of mercury is highest 
among the three lJ quids but the effective thermal con- 
ductivity of water is highest. 

3. OPTIMUM OPERATING CONDITION 

In the previous section, we discussed the effects of  
physical properties of the working liquid on the ther- 
mal characteristics of OCHTs and the following 
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Fig. 6. Frequency characteristics of effective thermal con- 
ductivity predicted from modified Watson's equations. 

results were obtained. The phenomenalistic key quan- 
tities controlling the enhanced heat-flow-rate are the 
phase shift between the lateral heat flux and the oscil- 
latory flow and the magnitude of  the lateral heat flux 
normal to the tube axis. There exists the optimum 
working liquid maximizing the effective thermal con- 
ductivity or diffusivity under given geometrical and 
oscillation conditions because of the effects of physical 
properties of the working liquid on the phenom- 
enalistic key quantities. Next, in this section, intro- 
ducing concepts of the 'optimum operating condition' 
and the 'thermal efficiency' of OCHTs, the relation 
between them will be discussed. Also in this section, we 
will neglect heat capacity of  tube walls for simplicity. 

3.1. Optimum operating condition 
As known from equations (22) and (23), the 

increase in tube radius results in higher apparent 
properties under the developed flow condition, but it 
results in lower apparent properties under the un- 
developed flow condition. This fact indicates that, if 
we fix the values of S and f, the apparent properties 
such as the effective thermal diffusivity and con- 
ductivity of a working liquid reach the respective max- 
ima at a cross-sectional size of the tube. Since, as 
known from equation (18), the effective thermal 
diffusivity is always proportional to S x, this cross- 
sectional size relates only to the frequency. In the 
present paper, the relation between this cross-sectional 
size and the frequency is named as the optimum opera- 
ting condition. 

Rearranging equation (18) by noticing 
= x/(Pr) We, the following equation is obtained : 

N~ [ We] 
1- 

Xor N, [~] 
-- M,[~t,Pr]. (24) 

ogS 2 = 2(1-Pr-2)N2[Wo]ct 2 

Equation (24) indicates that the optimum operating 
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Fig. 7. Relation under optimum operating condition. 

condition for a given frequency can be expressed by 
the following relation between ~op and Pr : 

/ / % \  2~ Zo I/Lp'~ ) ' , , /D- ) :  

(25) 

where Zop is the cross-sectional size (Zop = Pop for 
circular tubes and Zop---Hop for two-dimensional 
tubes) at which the effective thermal diffusivity or 
conductivity of a working liquid reaches a maximum 
for fixed values of S and ~o (or f )  and Mop is a function 
of Pr. 

In the present paper, the values of Crop were numeri- 
cally determined for the Prandtl number Pr by the 
modified Watson's equations such as equation (24), 
and the results are plotted in Fig. 7 together with their 
asymptotic expressions for Pr << 1 and Pr >> 1. 

3.2. Relation of  optimum operating condition to thermal 
coefficient of OCHTs 

Kaviany [9] proposed a concept of the efficiency of 
OCHTs. Following Kaviany, in the present paper, the 
'thermal coefficient' of OCHTs, q~, is defined by 

Q= kefAc 
(26) 

2n J0 (u" 2) dA dt 

where Qs is the time-averaged, additional heat-flow- 
rate for unit temperature gradient (111 -- 1 K m-J),  
Ws is the power input per unit tube length driving the 
oscillatory flow, Ac is the cross-sectional area of the 
liquid column, and 2 is the pressure gradient in the 
oscillatory flow. For  example, the pressure gradient is 
2 = P .  cos [rot] for both steady and oscillatory viscous 
laminar flow of the tidal displacement S '  sin [mt]. 
Referring to the modified Watson's equations, the 
dependencies of Q=, W= and r/~ on S, Z and f are 
summarized as follows; for the developed flow con- 
dition in circular tubes, 

Q= -~ (Sf)2R 4 Ws ~ (Sf) 2 q~ ,~ R 4 (27) 

for the developed flow condition in two-dimensional 
tubes of unit width, 

Q ~ ( S f ) Z H  3 W s ~ ( S f ) Z H  -1 ~ l ~ H "  

(28) 

for the undeveloped flow condition in circular tubes, 

Q= ~ S2~/( f)R Ws ~ SzfZSR, rl= ..~f-2 

(29) 

and for the undeveloped flow condition in two-dimen- 
sional tubes of unit width, 

Q~ ~ S2x/f  W= ~ szu  25 rl~ ,~ f - 2 .  (30) 

These relations indicate that the thermal coefficient 
does not depend on the amplitude S and there are two 
typical regions for the thermal coefficient as well as 
kef, Qs and W=. 

Now, let's discuss the relation between the optimum 
operating condition and the thermal coefficient. Figure 
8 shows frequency characteristics of both the effective 
thermal conductivity and the thermal coefficient pre- 
dicted from the modified Watson's equations for 
water under the condition of S -- 0.01 m. In Fig. 8, 
the frequency determined by equation (25) for 
R -- Rop = 0.4 mm, fop, is also shown. In the figure, 
the effective thermal conductivity obtained at R = Pop 
a n d f  = fop is denoted by k0. If  the working liquid and 
the amplitude of tidal displacement of the oscillatory 
flow are fixed, this value k0 is also obtained, for 
example, at f = f f  for R = 0.1 mm ( <  Pop) and at 
fhf for R = 1 mm ( >  Pop) as shown in Fig. 8. Here, 
compar ing  r/se[Rop, fop] with t/~[R = 0.1 mm, ff] and 
~/~[R = 1 mm,fhf] in Fig. 8, it is found that q~[R = R0, 
fop] is higher than both r/~[R = 0.1 mm, ff] and 
r/~[R = 1 mm, fhf]. It can be, thus, concluded that, to 
obtain a certain value of the effective thermal con- 
ductivity or diffusivity for a given amplitude of tidal 
displacement of oscillatory flow, the highest thermal 
coefficient is achieved under the optimum operating 
condition. 

In the above discussion, we fixed the amplitude S 
to obtain the value of k0. As shown in Figs. 9 and 
10, however, we can discuss the relation between the 
effective thermal conductivity and the thermal 
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coefficient also by fixing the cross-sectional size or the 
frequency. Here, it should be noted that only one 
curve is plotted for the thermal coefficient in Figs. 9 
and 10 because the thermal coefficient does not depend 
on S as known from equations (27)-(30). In Fig. 9, 
the tube radius is fixed at R = 1 mm and the frequency 
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Fig. 10. Relation between optimum operating condition and 
thermal efficiency at fixed frequency. 

under the optimum operating condition for R = 1 mm 
is denoted by fop. The value of  k0 is achieved by the 
amplitude Sop under the optimum operating 
condition. In this case, the value ofko is also obtained 
a t f f  for S = 2So~ and fnf for 0.5Sop for example. As 
can be seen from Fig. 9, in this case, a high thermal 
coefficient is achieved if we choose a frequency smaller 
than the frequency determined by the optimum 
operating condition (that is , f  < fop). In the same way, 
it is found from Fig. 10 that, in the case that the 
frequency is given, a high thermal coefficient is 
obtained if we choose a radius larger than the radius 
determined by the optimum operating condition (that 
is, R > Rop). So far, we have examined the relation 
between the optimum operating condition and the 
thermal coefficient for circular tubes, but the same 
results are obtained for two-dimensional tubes. 

3.3. Key values obtained at optimum operating con- 
dition 

As shown in Sections 3.1 and 3.2, the optimum 
operating condition is very important to achieve high 
thermal coefficients in OCHTs. Next, the values of 
xof and qso obtained under the optimum operating 
condition, x~f.op and r/~.op, will be examined by using 
the modified Watson's equations. 

Using equations (24) and (25), the effective thermal 
diffusivity obtained at the optimum operating 
condition, xof.op, can be expressed as 

xcf.op = M~,op [Pr] (Ogop S 2 ). (31) 

In the same way, the thermal coefficient obtained at 
the optimum operating condition can be expressed as 
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/ Cpf~ \ 

where f) = 1 K m -  ] and the tube length L = 1 m from 
the definition of r/~. Using the results on the opt imum 
operating condition shown in Fig. 7 and also the modi- 
fied Watson 's  equations such as equations (18)-(21), 
the values of M,~,o p and M~.oo were numerically cal- 
culated and the results are plotted in Fig. 11 for cir- 
cular tubes as an example. As shown in the figure, the 
maximum value of M~.op is 0.0782 and it is achieved 
for about  Pr > 1. On the other hand, the value of 
M,,op reaches the maximum at about  Pr = 1. These 
results indicate that liquids of Pr ~ 1 are near the 
opt imum working liquid for OCHTs. 

4. EFFECTS OF HEAT TRANSFER AT/THROUGH 
TUBE WALL 

In the previous sections, we discussed thermal 
characteristics of OCHTs by neglecting heat capacity 
of the tube walls and it was found that the opt imum 
operating condit ion gives a measure to achieve high 
thermal coefficients. However, as shown by Kaviany 
[9] for circular tubes, heat capacity of the tube wails 
can increase the apparent properties of OCHTs. On 
the other hand, the increase in wall thickness brings 
about  increase in total cross-section of OCHTs and 
then it reduces the nominal,  apparent properties 
defined by the total cross-section including the tube 
walls. In  this section, we propose a novel OCHT which 
can increase the effective thermal conductivity or 
diffusivity by using heat transfer through the tube wall 
without adding thick tube wails to OCHTs. 

4.1. Phase shifted OCHTs 
Since the amount  of axial heat flow in a single 

OCHT is not  so large, the OCHT must  be used as a 
bundle, as shown in Fig. 1. In this section, thus, ther- 
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Fig. 12. Schematic diagram of phase shifted OCHT in two- 
dimensional tubes. 

mal characteristics of bundle type OCHTs will be dis- 
cussed. For  simplicity, we selected a two-dimensional 
bundle shown in Fig. 12. The gap filled with liquid is 
2H and the wall thickness is 25. The tidal displacement 
of oscillatory flow in liquid column A in Fig. 12 is 
given as S" sin [cot]. As for the oscillatory flows in 
liquid columns B and C, it is possible to consider the 
following typical situations. In the first case, these 
liquid columns oscillate in phase with liquid column 
A. In the second case, both liquid columns B and C 
oscillate as - S ' s i n  [cot]. The former is the con- 
ventional type and it is named the 'synchronized 
OCHTs '  in the present paper. The latter is the novel 
type proposed in the present paper and it is named 
the 'phase shifted OCHTs' .  An example of the phase 
shifted OCHTs is shown in Fig. 13. It should be noted 
here that the structure shown in Fig. 13 can also 
reduce or remove the volume to absorb the tidal dis- 
placement of oscillatory flow. 

Since, focusing on the central port ion of the tube 
length of these OCHTs,  power input driving oscil- 
latory flow in the phase-shifted OCHTs is the same 
with that in the synchronized OCHTs,  in this section 
only the thermal characteristics in the synchronized 
and phase shifted OCHTs will be discussed. 

4.2. Analysis of  effective thermal diffusivity or con- 
ductivity in phase shifted OCHTs 

Supposing both steady and oscillatory viscous lami- 
nar  flow in a two-dimensional tube and also giving its 

/i 
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Fig. ] 3. Example of phase shifted OCHTs. 
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pressure gradient along the tube axis by P ' c o s  [cot], 
the instantaneou:s velocity distribution u[t; y] is given 
by the following equations [18] : 

u[y* ;t] = Re {u~F[y*] exp [/co/]} 

i (  c'°sh[x/(OW°y*] 1) 
t [y*] = \ cos [x/(i)/4Io] 

where 

Mu = 

(33) 

(34) 

P coS 
u,: (35) 

pro ~/(1 --Mu) 

2(fl sinh [fl] + fl sin [fl] - cosh [fl] + cos [fl]) 

/~2 (cosh ~] +cos [#]) 

(36) 

y* - Y p = x/(2)Wo (37) 
- n '  

In equations (33) and (34) ' :  denotes the imaginary 
unit and Re{X} tlhe real part of the complex X. 

Next, to deternaine the instantaneous temperature 
distribution, the following assumptions were 
employed; all physical properties of the liquid and 
tube material are constant and viscous heating in the 
liquid is negligible. Denoting the temperature fluc- 
tuation in liquid by 0 and the time-averaged tem- 
perature at x = :Co by Tin, the instantaneous tem- 
perature at x = x0 is given by T =Tm + 0. Noticing 
O0/dx = 0 for bath steady and oscillatory flow 
condition, the energy equation for the liquid becomes 

a0 d20 
d'-t + U['~ = K--.dy 2 (38) 

In the same way, denoting the temperature fluctuation 
in the wails by 0~, the energy equation for the tube 
walls becomes 

dO. d20~ 
dt - tow dY ~ (39) 

For the phase shifted OCHTs, the boundary con- 
ditions are 

d0 
y = 0 fffy = 0 (40) 

k d O = k ~  dO~ (41) y = H O[y ; t] = Ow[y ; t] 8y 8y 

y = H + 6  0~[y;t] = 0. (42) 

The boundary condition (42) is derived from the fact 
O~[H+ e; t] = - O~[H+ 2&- e ; t] for the phase shifted 
OCHTs where 1 < e < 8. 

Both 0 and 0w fluctuate with the angular frequency 
o9 and their amplitudes are proportional to f~ and S. 
Using equation (35), thus, the solutions can be 
assumed as 

0 -- fluc G[y] exp [icot] (43) 
O9 

Ow = f~uc Gw[y] exp [icot]. (44) 
CO 

Substituting equations (43) and (44) for (38) and (39), 
and using equations (40)-(42), the solutions are 

G[y* ; t] = 1 + A -cosh [x/(i) Woy*] 

+ B'cosh[x/(O~ty* ] (45) 

G~[y* ; t] = C(cosh [x/(0~wY*] - D "  sinh [x/(/)ct~y*]) 

(46) 

where 

Pr 
A = (47) 

(z -PO cosh k/(0 Wo] 

B =  ( ~ ) ( 1 - D ' t a n h [ x / ( O ~ t w ] ) - B 2  (48) 

B,I = p(x/(Pr) tanh [x/(0 Wo] - t a n h  [x/(0~t]) 

(49) 

B,2 = (1 - Pr) {# sinh [~/(0ct] (D" tanh [x/(0C~w] - 1) 

+~/(7) cosh [~/(00t](tanh [x/(0Ctw]-D)} (50) 

1 
B2 -- (51) 

(1 - ?r) cosh [~/(0~1 

cosh t,/(O l 
c =   /cosh (52) 

D = coth [x/(f)(1 +a)~w] (53) 

and 

6 k ~: 

When a ~ do we find from equations (48)-(53) that 
B approaches 

" "  (.l.r)c h..0J 
× (x/(Pr) tanh[x/( i )Wol+ Z'~ 

\- ~ / (54) 

and when t r ~  0 

1 
B0,p = (1 - Pr) cosh [x/(0~]" (55) 

Using equations (33), (35) and (43), the time-aver- 
aged, total heat flux down the axial temperature gradi- 
ent at y in the cross-section of the liquid column, q,x, 
can be given by 
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= ' ~ [ { k + (pcp "] 2 ,] \ I - M,, S 2 ~Re {F'G+}} (56) 

where G ÷ denotes the complex conjugation of G. 
Finally, using equations (33)-(37), (45)-(53) and (56), 
the effective thermal diffusivity averaged over the 
cross-section of the liquid column is given by 

1 

= [2(1 --M~J Jo Re {F" a ÷ } dy* 

= o~S~ * (57) 

where x~ is non-dimensional thermal diffusivity. The 
total, effective thermal diffusivity is given by 

~of,, = x + xof. (58) 

4.3. Analysis of effective thermal conductivity in syn- 
chronized OCHTs 

As for the synchronized OCHTs, since temperature 
distribution is symmetric for the mid plane of the tube 
wall, the boundary condition (42) becomes 

y = H + 6 ; ~  = 0. (59) 

Since other equations and conditions are the same as 
those for the phase shifted OCHTs, it is found that 
the solutions for the phase shifted OCHTs can be used 
if equation (53) is replaced by 

D = tanh [x/(0(1 + a)aw]. (60) 

In this case, when a --* 0, B approaches 

Bo,~ = -- x/(Pr) tanh [~/(i) Wo] (61) 
(1 - P r )  sinh [~/(0ct] " 

4.4. Thermal characteristics of phase shifted OCHTs 
From equations (33)-(37), (45)-(53) and (57), it 

is found that the non-dimensional, effective thermal 
diffusivity, x'f, is a function of Pr, Wo, I~( = k/k~), 
~( = x/x~) and o( = 6/H) and the effects of these par- 
ameters on r*r are complicated. In this paper, thus, 
the effects of these parameters on x* are examined for 
water. 

The non-dimensional, effective thermal diffusivities 
of water for ? = 0.01 and y = 1 are plotted to the 
non-dimensional wall thickness a in Figs. 14 and 15, 
respectively. The parameters in each figure are the 
Womersley number Wo and the thermal conductivity 
ratio p. In each figure, the non-dimensional, effective 
thermal diffusivity of the synchronized OCHTs is 
denoted by x*~ and that of the phase shifted OCHTs 
by KTe~,p. 

From the figures, it is found that the asymptotic 
values in the two types for a--w 0, x*,~ = xCf,,o* and 

* depend on Wo but not on #. These ~Te~,p ~ Kef, pO, 
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chronized and phase shifted OCHTs (7 = 0.01). 
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Fig. 15. Comparison between thermal characteristics of syn- 

chronized and phase shifted OCHTs 0' = 1.0). 

asymptotic values correspond to the non-dimensional, 
effective thermal diffusivity for tube walls of negligibly 
small heat capacity, and the asymptotic value * /¢~so  

corresponds to the effective thermal diffusivity pre- 
dicted from the modified Watson's equations. On the 
other hand, for ~r ~ 0% the non-dimensional, effective 
thermal diffusivities in both types reach another 
asymptotic value at a = ~*. From comparison 
between Figs. 14 and 15, it is found that the value of 
a * depends on Pr, Wo and ? but not on #. As is 
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Fig. 16. Comparison between frequency characteristics of 
effective thermal diffusivity of synchronized and phase 

shifted OCHTs. 

known, the asymptotic values of the two types for tr 
ov are independent of the type of OCHTs and then a 
unique value x *~ . 

As tr increases with keeping other parameters con- 
stants, the value of  X*s increases almost mono- 
tonously from x* ~0 ** . to xof , while a small maximum is 
observed near a = a ~ .  As for the phase shifted 
OCHTs, with increase of tr, the value of x*.p decreases 
monotonously from X*po to x ** for larger values of 
Wo. For  smaller values of Wo, with increase of a, it 
increases from xofoo* and reaches the asymptotic value 
x** through a maximum. In addition, as known from 
Figs. 14 and 15, the values of X*,p for smaller values 
of tr are independent of 7- 

For  smaller val~aes of Wo (for example, Wo = O. 1 
in the figures), x,~.p0 is much higher than x~f.s0.* In the 
synchronized OCttTs, while x*.s can be higher than 

* if a thick wall is added to the system, the nominal ~ e f ,  sO 

values of x*s based on the total cross-section cannot 
be so high because a* -~ 10. On the other hand, in the 
phase shifted OCHTs, X*,p reach a maximum at tr ~ 1. 
Summarizing these results, it can be concluded that, 
for smaller values of Wo, the phase shifted OCHTs can 
achieve effective thermal diffusivities or conductivities 
much higher than those of the synchronized OCHTs 
without adding thick walls. 

The ratio of  x*.~0 to x~.~0 for a given Wo decreases 
with increase of  l~b. For  medium values of Wo (for 
example, Wo = 1 in the figures), however, X*po is still 
much higher than %f.~0*. This results also confirm the 
superiority of the phase shifted OCHTs to the con- 
ventional synchronized OCHTs. 

To illustrate the superiority of the phase shifted 
OCHTs more directly, the frequency characteristics 
of the effective thelTnal diffusivity are plotted for the 
two types of  OCHTs of 2H = 2 mm and S = 5 cm 
in Fig. 16. In the figure, solid line A represents the 
synchronized OCHT with very thin walls for water, 

and solid line C for mercury. Solid lines B and D 
represent the synchronized OCHTs with 6 = I mm for 
water and mercury, respectively. Comparison among 
these lines indicates that, as Kaviany [9] reported for 
circular tubes, the effective thermal conductivity of  
the synchronized OCHTs cannot be increased without 
adding thick walls. The effect of wall thickness is 
strong, especially in the case of mercury whose Prandtl 
number is small. Dotted line E represents the phase 
shifted OCHT with very thin walls for water, and 
dotted line G for mercury. Dotted lines F and H 
represent the phase shifted OCHTs with 3 = 1 mm for 
water and mercury, respectively. From comparison 
among these lines, it is found that, in the phase shifted 
OCHTs, the effect of wall thickness on kof, o is very 
weak and the phase shifted OCHTs can achieve effec- 
tive thermal conductivities and thermal coefficients 
much higher than those of the synchronized OCHTs. 

5. CONCLUSIONS 

In the present paper, we discussed how to increase 
the thermal coefficient in oscillation-controlled heat 
transport tubes (OCHTs) and we obtained the fol- 
lowing conclusions. 

(1) In the undeveloped flow condition within tubes 
of negligibly small heat capacity, the phenomenalistic 
key values controlling the thermal characteristics of 
OCHTs are the phase shift between the lateral heat 
flux and the oscillatory flow and the magnitude of  
the lateral heat flux. Decrease in the phase shift and 
increase in the magnitude of lateral heat flux result in 
higher effective thermal conductivities or diffusivities. 
Increase in thermal conductivity of the working liquid 
brings about higher lateral heat fluxes but it results in 
larger phase shifts. Because of such conflicting effects, 
there exists the optimum working liquid maximizing 
the effective thermal conductivity or diffusivity under 
fixed geometrical and oscillation conditions. Water is 
a candidate for the optimum working liquid. 

(2) If  the amplitude and frequency of  oscillatory 
flow are fixed, there is a relation between the frequency 
and the cross-sectional size (for example, radius for 
circular tubes) under which the effective thermal con- 
ductivity or diffusivity of OCHTs with tubes of neg- 
ligibly small heat capacity reaches a maximum. This 
relation, that is the optimum operating condition, can 
be expressed as a relation between ~ and Pr. The 
optimum operating condition relates also to the mea- 
sure to achieve higher thermal coefficients of OCHTs. 
Here, the thermal coefficient is the ratio of the time- 
averaged, additional heat-flow-rate resulting from 
oscillatory flow to the input power driving the oscil- 
latory flow. Liquids of Pr ~ 1 are the optimum 
operating liquid which maximizes the effective thermal 
diffusivity (or conductivity) and can achieve higher 
thermal coefficients for OCHTs under the optimum 
operating condition. 

(3) While in the conventional synchronized 



2470 S. NISHIO et al. 

OCHTs  the thermal coefficient can be increased by 
adding thick tube walls, the phase shifted OCHTs  
proposed in the present paper can achieve much 
higher thermal coefficients without adding thick walls 
and also can remove or reduce a volume to absorb the 
tidal displacement of  oscillatory flow. 
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